NCERT Solutions for Class 12 Maths Chapter 9 – Differential Equations Ex 9.5
Page No 406:
Question 1:
Answer:
The given differential equation i.e., (x2 + xy) dy = (x2 + y2) dx can be written as:
This shows that equation (1) is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Differentiating both sides with respect to x, we get:
Substituting the values of v and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 2:
Answer:
The given differential equation is:
Thus, the given equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Differentiating both sides with respect to x, we get:
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 3:
Answer:
The given differential equation is:
Thus, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 4:
Answer:
The given differential equation is:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 5:
Answer:
The given differential equation is:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution for the given differential equation.
Question 6:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of v and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 7:
Answer:
The given differential equation is:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 8:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 9:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Therefore, equation (1) becomes:
This is the required solution of the given differential equation.
Question 10:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
x = vy
Substituting the values of x and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Question 11:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Now, y = 1 at x = 1.
Substituting the value of 2k in equation (2), we get:
This is the required solution of the given differential equation.
Question 12:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Now, y = 1 at x = 1.
Substituting in equation (2), we get:
This is the required solution of the given differential equation.
Question 13:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve this differential equation, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
Now, .
Substituting C = e in equation (2), we get:
This is the required solution of the given differential equation.
Question 14:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the values of y and in equation (1), we get:
Integrating both sides, we get:
This is the required solution of the given differential equation.
Now, y = 0 at x = 1.
Substituting C = e in equation (2), we get:
This is the required solution of the given differential equation.
Question 15:
Answer:
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Substituting the value of y and in equation (1), we get:
Integrating both sides, we get:
Now, y = 2 at x = 1.
Substituting C = –1 in equation (2), we get:
This is the required solution of the given differential equation.
Question 16:
A homogeneous differential equation of the form can be solved by making the substitution
A. y = vx
B. v = yx
C. x = vy
D. x = v
Answer:
For solving the homogeneous equation of the form, we need to make the substitution as x = vy.
Hence, the correct answer is C.
Page No 407:
Question 17:
Which of the following is a homogeneous differential equation?
A.
B.
C.
D.
Answer:
Function F(x, y) is said to be the homogenous function of degree n, if
F(λx, λy) = λn F(x, y) for any non-zero constant (λ).
Consider the equation given in alternativeD:
Hence, the differential equation given in alternative D is a homogenous equation.