Breaking

NCERT Solutions for Class 12 Maths Chapter 3 – Matrices Ex 3.3

NCERT Solutions for Class 12 Maths Chapter 3 – Matrices Ex 3.3

Page No 88:

Question 1:

Find the transpose of each of the following matrices:
(i)  (ii)  (iii) 

Answer:

(i) 
(ii) 
(iii) 

Question 2:

If
and, then verify that
(i) 
(ii) 

Answer:

We have:
(i)
(ii)

Question 3:

If
and, then verify that
(i) 
(ii) 

Answer:

(i) It is known that
Therefore, we have:
(ii)

Question 4:

If
and, then find 

Answer:

We know that

Question 5:

For the matrices A and B, verify that (AB)′ =  where
(i) 
(ii) 

Answer:

(i)
(ii)

Page No 89:

Question 6:

If (i) , then verify that 
(ii) , then verify that 

Answer:

(i)
(ii)

Question 7:

(i) Show that the matrix is a symmetric matrix
(ii) Show that the matrix is a skew symmetric matrix

Answer:

(i) We have:
Hence, A is a symmetric matrix.
(ii) We have:
Hence, A is a skew-symmetric matrix.

Question 8:

For the matrix, verify that
(i)  is a symmetric matrix
(ii)  is a skew symmetric matrix

Answer:

(i) 
Hence,
 is a symmetric matrix.
(ii) 
Hence,
is a skew-symmetric matrix.

Question 9:

Find
and, when 

Answer:

The given matrix is

Question 10:

Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
(i) 
(ii) 
(iii) 
(iv) 

Answer:

(i)
Thus,  is a symmetric matrix.
Thus,  is a skew-symmetric matrix.
Representing A as the sum of P and Q:
(ii)
Thus,  is a symmetric matrix.
Thus,  is a skew-symmetric matrix.
Representing A as the sum of P and Q:
(iii)
Thus,  is a symmetric matrix.
Thus,  is a skew-symmetric matrix.
Representing A as the sum of P and Q:
(iv)
Thus,  is a symmetric matrix.
Thus, is a skew-symmetric matrix.
Representing A as the sum of P and Q:

Page No 90:

Question 11:

If AB are symmetric matrices of same order, then AB − BA is a
A. Skew symmetric matrix B. Symmetric matrix
C. Zero matrix D. Identity matrix

Answer:

The correct answer is A.
A and B are symmetric matrices, therefore, we have:
Thus, (AB − BA) is a skew-symmetric matrix.

Question 12:

If, then, if the value of α is
A.  B. 
C. π D. 

Answer:

The correct answer is B.
Comparing the corresponding elements of the two matrices, we have:

Courtesy : CBSE